Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Int J Med Sci ; 21(4): 644-655, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464836

RESUMO

Vascular dementia (VD) is the second most prevalent dementia type, with no drugs approved for its treatment. Here, the effects of Banhabaekchulcheonma-Tang (BBCT) on ischemic brain injury and cognitive function impairment were investigated in a bilateral carotid artery stenosis (BCAS) mouse model. Mice were divided into sham-operated, BCAS control, L-BBCT (40 ml/kg), and H-BBCT (80 ml/kg) groups. BBCT's effects were characterized using the Y-maze test, novel object recognition test (NORT), immunofluorescence staining, RNA sequencing, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) analyses. The NORT revealed cognitive function improvement in the H-BBCT group, while the Y-maze test revealed no significant difference among the four groups. The CD68+ microglia and GFAP+ astrocyte numbers were reduced in the H-BBCT group. Furthermore, H-BBCT treatment restored the dysregulation of gene expression caused by BCAS. The major BBCT targets were predicted to be cell division cycle protein 20 (CDC20), Epidermal growth factor (EGF), and tumor necrosis factor receptor-associated factor 1 (TRAF1). BBCT regulates the neuroactive ligand-receptor interaction and neuropeptide signaling pathways, as predicted by KEGG and GO analyses, respectively. BBCT significantly improved cognitive impairment in a BCAS mouse model by inhibiting microglial and astrocyte activation and regulating the expression of CDC20, EGF, TRAF1, and key proteins in the neuroactive ligand-receptor interaction and neuropeptide signaling pathways.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Estenose das Carótidas , Disfunção Cognitiva , Neuropeptídeos , Animais , Camundongos , Estenose das Carótidas/complicações , Estenose das Carótidas/tratamento farmacológico , Fator de Crescimento Epidérmico/metabolismo , Ligantes , Fator 1 Associado a Receptor de TNF/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Cognição , Modelos Animais de Doenças , Neuropeptídeos/metabolismo , Camundongos Endogâmicos C57BL
2.
J Dermatol ; 51(1): 120-124, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37753577

RESUMO

A case of cytoplasmic anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma (ALCL) initially involving the skin in a 44-year-old Japanese female is reported. The patient had a hemorrhagic erythematous tumor on the right thigh without any systemic symptoms. Pathology showed diffuse infiltration of CD30-positive anaplastic large cells positive for epithelial membrane antigen and cytoplasmic ALK. The right inguinal lymph node showed infiltration of tumor cells in the marginal sinus. Only 2 weeks after radiation therapy, the patient developed multiple subcutaneous nodules and lung involvement. Even after subsequent multichemotherapy sessions, cutaneous recurrence occurred. Literature review of cytoplasmic ALK-positive ALCL initially involving in the skin revealed that skin lesions were mostly seen in the extremities and that half of the cases developed extracutaneous lesions. Radiation and chemotherapy were effective for most cases. Inverse RT-PCR identified a tumor necrosis factor receptor-associated factor (TRAF)1-ALK fusion in our case. Most reported cases with this translocation experienced repeated changes in chemotherapy, suggesting poorer prognosis. Although ALK-positive ALCL generally responds well to chemotherapy, the presence of a TRAF1-ALK fusion may suggest resistance to treatment. Detection of fusion partners of ALK is important for predicting clinical courses and deciding treatment options.


Assuntos
Linfoma Anaplásico de Células Grandes , Humanos , Feminino , Adulto , Linfoma Anaplásico de Células Grandes/diagnóstico , Linfoma Anaplásico de Células Grandes/genética , Quinase do Linfoma Anaplásico/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/uso terapêutico , Fator 1 Associado a Receptor de TNF/metabolismo , Linfonodos/patologia
3.
Biochim Biophys Acta Gen Subj ; 1867(9): 130423, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37419425

RESUMO

BACKGROUND: Cisplatin-induced acute kidney injury (AKI) is a severe clinical complication with no satisfactory therapies in the clinic. Tumor necrosis factor receptor (TNFR)-associated factor 1 (TRAF1) plays a vital role in both inflammation and metabolism. However, the TRAF1 effect in cisplatin induced AKI needs to be evaluated. METHODS: We observed the role of TRAF1 in eight-week-old male mice and mouse proximal tubular cells both treated with cisplatin by examining the indicators associated with kidney injury, apoptosis, inflammation, and metabolism. RESULTS: TRAF1 expression was decreased in cisplatin-treated mice and mouse proximal tubular cells (mPTCs), suggesting a potential role of TRAF1 in cisplatin-associated kidney injury. TRAF1 overexpression significantly alleviated cisplatin-triggered AKI and renal tubular injury, as demonstrated by reduced serum creatinine (Scr) and urea nitrogen (BUN) levels, as well as the ameliorated histological damage and inhibited upregulation of NGAL and KIM-1. Moreover, the NF-κB activation and inflammatory cytokine production enhanced by cisplatin were significantly blunted by TRAF1. Meanwhile, the increased number of apoptotic cells and enhanced expression of BAX and cleaved Caspase-3 were markedly decreased by TRAF1 overexpression both in vivo and vitro. Additionally, a significant correction of the metabolic disturbance, including perturbations in energy generation and lipid and amino acid metabolism, was observed in the cisplatin-treated mice kidneys. CONCLUSION: TRAF1 overexpression obviously attenuated cisplatin-induced nephrotoxicity, possibly by correcting the impaired metabolism, inhibiting inflammation, and blocking apoptosis in renal tubular cells. GENERAL SIGNIFICANCE: These observations emphasize the novel mechanisms associated to metabolism and inflammation of TRAF1 in cisplatin-induced kidney injury.


Assuntos
Injúria Renal Aguda , Cisplatino , Fator 1 Associado a Receptor de TNF , Animais , Masculino , Camundongos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Cisplatino/efeitos adversos , Inflamação , Doenças Metabólicas , Fator 1 Associado a Receptor de TNF/metabolismo
4.
Pathol Oncol Res ; 29: 1611038, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351538

RESUMO

CVM-1118 (foslinanib) is a phosphoric ester compound selected from 2-phenyl-4-quinolone derivatives. The NCI 60 cancer panel screening showed CVM-1125, the major active metabolite of CVM-1118, to exhibit growth inhibitory and cytotoxic effects at nanomolar range. CVM-1118 possesses multiple bioactivities, including inducing cellular apoptosis, cell cycle arrest at G2/M, as well as inhibiting vasculogenic mimicry (VM) formation. The TNF receptor associated protein 1 (TRAP1) was identified as the binding target of CVM-1125 using nematic protein organization technique (NPOT) interactome analysis. Further studies demonstrated CVM-1125 reduced the protein level of TRAP1 and impeded its downstream signaling by reduction of cellular succinate levels and destabilization of HIF-1α. The pharmacogenomic biomarkers associated with CVM-1118 were also examined by Whole Genome CRISPR Knock-Out Screening. Two hits (STK11 and NF2) were confirmed with higher sensitivity to the drug in cell knock-down experiments. Biological assays indicate that the mechanism of action of CVM-1118 is via targeting TRAP1 to induce mitochondrial apoptosis, suppress tumor cell growth, and inhibit vasculogenic mimicry formation. Most importantly, the loss-of-function mutations of STK11 and NF2 are potential biomarkers of CVM-1118 which can be applied in the selection of cancer patients for CVM-1118 treatment. CVM-1118 is currently in its Phase 2a clinical development.


Assuntos
Apoptose , Neovascularização Patológica , Humanos , Fator 1 Associado a Receptor de TNF/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Biomarcadores , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSP90/metabolismo
5.
Int J Mol Sci ; 24(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176078

RESUMO

The yellow catfish (Pelteobagrus fulvidraco) is an economic fish with a large breeding scale, and diseases have led to huge economic losses. Tumor necrosis factor receptor-associated factors (TRAFs) are a class of intracellular signal transduction proteins that play an important role in innate and adaptive immune responses by mediating NF-κB, JNK and MAPK signaling pathways. However, there are few studies on the TRAF gene family in yellow catfish. In this study, the open reading frame (ORF) sequences of TRAF1, TRAF2a, TRAF2b, TRAF3, TRAF4a, TRAF4b, TRAF5, TRAF6 and TRAF7 genes were cloned and identified in yellow catfish. The ORF sequences of the nine TRAF genes of yellow catfish (Pf_TRAF1-7) were 1413-2025 bp in length and encoded 470-674 amino acids. The predicted protein structures of Pf_TRAFs have typically conserved domains compared to mammals. The phylogenetic relationships showed that TRAF genes are conserved during evolution. Gene structure, motifs and syntenic analyses of TRAF genes showed that the exon-intron structure and conserved motifs of TRAF genes are diverse among seven vertebrate species, and the TRAF gene family is relatively conserved evolutionarily. Among them, TRAF1 is more closely related to TRAF2a and TRAF2b, and they may have evolved from a common ancestor. TRAF7 is quite different and distantly related to other TRAFs. Real-time quantitative PCR (qRT-PCR) results showed that all nine Pf_TRAF genes were constitutively expressed in 12 tissues of healthy yellow catfish, with higher mRNA expression levels in the gonad, spleen, brain and gill. After infection with Edwardsiella ictaluri, the expression levels of nine Pf_TRAF mRNAs were significantly changed in the head kidney, spleen, gill and brain tissues of yellow catfish, of which four genes were down-regulated and one gene was up-regulated in the head kidney; four genes were up-regulated and four genes were down-regulated in the spleen; two genes were down-regulated, one gene was up-regulated, and one gene was up-regulated and then down-regulated in the gill; one gene was up-regulated, one gene was down-regulated, and four genes were down-regulated and then up-regulated in the brain. These results indicate that Pf_TRAF genes might be involved in the immune response against bacterial infection. Subcellular localization results showed that all nine Pf_TRAFs were found localized in the cytoplasm, and Pf_TRAF2a, Pf_TRAF3 and Pf_TRAF4a could also be localized in the nucleus, uncovering that the subcellular localization of TRAF protein may be closely related to its structure and function in cellular mechanism. The results of this study suggest that the Pf_TRAF gene family plays important roles in the immune response against pathogen invasion and will provide basic information to further understand the roles of TRAF gene against bacterial infection in yellow catfish.


Assuntos
Peixes-Gato , Infecções por Enterobacteriaceae , Doenças dos Peixes , Animais , Edwardsiella ictaluri/metabolismo , Infecções por Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/veterinária , Peixes-Gato/genética , Fator 1 Associado a Receptor de TNF/genética , Fator 1 Associado a Receptor de TNF/metabolismo , Filogenia , Fator 3 Associado a Receptor de TNF/genética , Proteínas de Peixes/metabolismo , Mamíferos/metabolismo
6.
Biochem Cell Biol ; 101(4): 361-376, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37084412

RESUMO

Epigenetic regulation contributes to human health and disease, especially cancer, but the mechanisms of many epigenetic regulators remain obscure. Most research is focused on gene regulatory processes, such as mRNA translation and DNA damage repair, rather than the effects on biological functions like mitochondrial activity and oxidative phosphorylation. Here, we identified an essential role for the histone chaperone structure-specific recognition protein 1 (SSRP1) in mitochondrial oxidative respiration in hepatocellular carcinoma, and found that SSRP1 suppression led to mitochondrial damage and decreased oxidative respiration. Further, we focused on TNF receptor-associated protein 1 (TRAP1), the only member of the heat shock protein 90 (HSP90) family, which directly interacts with selected respiratory complexes and affects their stability and activity. We confirmed that SSRP1 downregulation caused a decrease in TRAP1 expression at both the mRNA and protein levels. A chromatin immunoprecipitation assay also showed that SSRP1 could deposit in the TRAP1 promoter region, indicating that SSRP1 maintains mitochondrial function and reactive oxygen species levels through TRAP1. Additionally, rescue experiments and animal experiments confirmed the mechanism of SSRP1 and TRAP1 interaction. In summary, we identified a new mechanism that connects mitochondrial respiration and apoptosis, via SSRP1.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Carcinoma Hepatocelular/metabolismo , Fator 1 Associado a Receptor de TNF/metabolismo , Chaperonas de Histonas/metabolismo , Epigênese Genética , Neoplasias Hepáticas/metabolismo , Mitocôndrias/metabolismo , Apoptose/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo
7.
Exp Cell Res ; 422(2): 113441, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36481205

RESUMO

Rheumatoid arthritis (RA) is a chronic, autoimmune and systemic inflammatory disease affecting 1% of the population worldwide. Immune suppression of the activity and progress of RA is vital to reduce the disability and mortality rate as well as improve the quality of life of RA patients. However, the immune molecular mechanism of RA has not been clarified yet. Our results indicated that exosomes derived from TNFα-stimulated RA fibroblast-like synoviocytes (RA-FLSs) suppressed chondrocyte proliferation and migration through modulating cartilage extracellular matrix (CECM) determining by MTS assay, cell cycle analysis, Transwell assay and Western blot (WB). Besides, RNA sequencing and verification by qRT-PCR revealed that exosomal long non-coding RNA (lncRNA) tumor necrosis factor-associated factor 1 (TRAF1)-4:1 derived from RA-FLSs treated with TNFα was a candidate lncRNA, which also inhibited chondrocyte proliferation and migration through degrading CECM. Moreover, RNA sequencing and bioinformatics analysis identified that C-X-C motif chemokine ligand 1 (CXCL1) was a target mRNA of miR-27a-3p while miR-27a-3p was a target miRNA of lnc-TRAF1-4:1 in chondrocytes. Mechanistically, lnc-TRAF1-4:1 upregulated CXCL1 expression through sponging miR-27a-3p as a competing endogenous RNA (ceRNA) in chondrocytes identifying by Dual-luciferase reporter gene assay. Summarily, exosomal lncRNA TRAFD1-4:1 derived from RA-FLSs suppressed chondrocyte proliferation and migration through degrading CECM by upregulating CXCL1 as a sponge of miR-27a-3p. This study uncovered a novel RA-related lncRNA and investigated the roles of RA-FLS-derived exosomes and exosomal lnc-TRAF1-4:1 in articular cartilage impairment, which might provide novel therapeutic targets for RA.


Assuntos
Artrite Reumatoide , Cartilagem , Condrócitos , RNA Longo não Codificante , Sinoviócitos , Humanos , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Cartilagem/metabolismo , Cartilagem/patologia , Proliferação de Células/genética , Células Cultivadas , Condrócitos/metabolismo , Fibroblastos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Qualidade de Vida , RNA Longo não Codificante/metabolismo , Sinoviócitos/metabolismo , Fator 1 Associado a Receptor de TNF/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Exossomos/genética
8.
J Invest Dermatol ; 143(2): 209-219.e13, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36049539

RESUMO

Cutaneous lupus erythematosus (CLE) has a specific microRNA expression profile. MiR-885-5p has been found to be downregulated in the epidermis of CLE lesions; however, its biological role in the disease has not been studied. In this study, we show that miR-885-5p is markedly reduced in CLE keratinocytes (KCs) with IFN-α and UVB being strong miR-885-5p regulators in vitro. Microarray expression profiling of anti‒miR-885-5p‒transfected KCs identified PSMB5 as a direct target. Specific inhibition of miR-885-5p increased epidermal proliferation by modulating keratin 16 gene K16, BIRC5, TP63, and CDK4 proliferative genes and promoted NF-κB signaling pathway in human primary KCs by increasing IκBα degradation. Silencing PSMB5 rescued the effect of miR-885-5p inhibition, indicating that miR-885-5p regulates proliferation and NF-κB activation by targeting PSMB5 in KCs. In addition, inhibition of miR-885-5p increased the ability of KCs to attract leukocytes in a PSMB5-independent manner. We identified TRAF1 as another direct target, and its silencing reduced leukocyte migration. Collectively, our findings suggest that UVB and IFN-ɑ downregulate miR-885-5p in CLE KCs, leading to epidermal inflammation by NF-κB activity enhancement and proliferation through PSMB5 and immune recruitment through TRAF1. Our data indicate that miR-885-5p is a potential therapeutic target in CLE.


Assuntos
Lúpus Eritematoso Cutâneo , MicroRNAs , Humanos , NF-kappa B/metabolismo , Regulação para Baixo , MicroRNAs/genética , MicroRNAs/metabolismo , Fator 1 Associado a Receptor de TNF/genética , Fator 1 Associado a Receptor de TNF/metabolismo , Transdução de Sinais/genética , Lúpus Eritematoso Cutâneo/genética
9.
Brain Behav ; 12(12): e2786, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36377337

RESUMO

AIM: The aim of this study was to investigate the therapeutic roles of Tetrandrine (TET) on traumatic brain injury (TBI) and the underlying mechanism. METHOD: Traumatic injury model of hippocampal neurons and TBI mouse model were established to evaluate the therapeutic effects. The expression of neuron-specific enolase (NSE), Caspase 3, and Caspase 12 was detected by immunofluorescence. The expression of TNF-α, NF-κB, TRAF1, ERS markers (GADD34 and p-PERK), IRE1α, CHOP, JNK, and p-JNK were evaluated by western blot. Flow cytometry was used to determine the apoptosis of neurons. Brain injury was assessed by Garcia score, cerebral water content, and Evan blue extravasation test. Hematoxylin and eosin staining was used to determine the morphological changes of hippocampal tissue. Apoptosis was assessed by TUNEL staining. RESULT: In traumatic injury model of hippocampal neurons, TET downregulated NSE, TNF-α, NF-κB, TRAF1, GADD34, p-PERK, IRE1α, CHOP, and p-JNK expression. TET reduced Caspase 3 and Caspase 12 cleavage. Apoptosis rate was inhibited by the introduction of TET. TET improved the Garcia neural score, decreased the cerebral water content and Evans blue extravasation, and reduced NSE, TNF-α, NF-κB, TRAF1, IRE1α, CHOP, and p-JNK expression in mice with TBI, which was significantly reversed by Anisomycin, a JNK selective activator. CONCLUSION: TET alleviated inflammation and neuron apoptosis in experimental TBI by regulating the IRE1α/JNK/CHOP signal pathway.


Assuntos
Lesões Encefálicas Traumáticas , Endorribonucleases , Animais , Camundongos , Apoptose/efeitos dos fármacos , Benzilisoquinolinas/farmacologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Caspase 12/metabolismo , Caspase 3/metabolismo , Endorribonucleases/metabolismo , Endorribonucleases/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , MAP Quinase Quinase 4/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator 1 Associado a Receptor de TNF/metabolismo , Fator 1 Associado a Receptor de TNF/farmacologia , Fator de Transcrição CHOP/efeitos dos fármacos , Fator de Transcrição CHOP/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Água/metabolismo , Água/farmacologia , Modelos Animais de Doenças
10.
Int J Mol Sci ; 23(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36142875

RESUMO

High-risk human papillomaviruses (HPV) are important agents, responsible for a large percentage of the 745,000 cases of head and neck squamous cell carcinomas (HNSCC), which were identified worldwide in 2020. In addition to being virally induced, tobacco and heavy alcohol consumption are believed to cause DNA damage contributing to the high number of HNSCC cases. Gene expression and DNA methylation differ between HNSCC based on HPV status. We used publicly available gene expression and DNA methylation profiles from the Cancer Genome Atlas and compared HPV positive and HPV negative HNSCC groups. We used differential gene expression analysis, differential methylation analysis, and a combination of these two analyses to identify the differences. Differential expression analysis identified 1854 differentially expressed genes, including PCNA, TNFRSF14, TRAF1, TRAF2, BCL2, and BIRC3. SYCP2 was identified as one of the top deregulated genes in the differential methylation analysis and in the combined differential expression and methylation analyses. Additionally, pathway and ontology analyses identified the extracellular matrix and receptor interaction pathway as the most altered between HPV negative and HPV positive HNSCC groups. Combining gene expression and DNA methylation can help in elucidating the genes involved in HPV positive HNSCC tumorigenesis, such as SYCP2 and TAF7L.


Assuntos
Alphapapillomavirus , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Alphapapillomavirus/genética , Carcinoma de Células Escamosas/patologia , Metilação de DNA , Expressão Gênica , Neoplasias de Cabeça e Pescoço/complicações , Neoplasias de Cabeça e Pescoço/genética , Humanos , Papillomaviridae/genética , Papillomaviridae/metabolismo , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/patologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/complicações , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Fator 1 Associado a Receptor de TNF/metabolismo , Fator 2 Associado a Receptor de TNF/metabolismo
11.
Cell Stress Chaperones ; 27(5): 573-585, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35976490

RESUMO

The molecular chaperone TNF-receptor-associated protein-1 (TRAP1) controls mitochondrial respiration through regulation of Krebs cycle and electron transport chain activity. Post-translational modification (PTM) of TRAP1 regulates its activity, thereby controlling global metabolic flux. O-GlcNAcylation is one PTM that is known to impact mitochondrial metabolism, however the major effectors of this regulatory PTM remain inadequately resolved. Here we demonstrate that TRAP1-O-GlcNAcylation decreases TRAP1 ATPase activity, leading to increased mitochondrial metabolism. O-GlcNAcylation of TRAP1 occurs following mitochondrial import and provides critical regulatory feedback, as the impact of O-GlcNAcylation on mitochondrial metabolism shows TRAP1-dependence. Mechanistically, loss of TRAP1-O-GlcNAcylation decreased TRAP1 binding to ATP, and interaction with its client protein succinate dehydrogenase (SDHB). Taken together, TRAP1-O-GlcNAcylation serves to regulate mitochondrial metabolism by the reversible attenuation of TRAP1 chaperone activity.


Assuntos
Chaperonas Moleculares , Succinato Desidrogenase , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Processamento de Proteína Pós-Traducional , Respiração , Succinato Desidrogenase/metabolismo , Fator 1 Associado a Receptor de TNF/química , Fator 1 Associado a Receptor de TNF/metabolismo
12.
J Bone Miner Metab ; 40(5): 819-828, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35960381

RESUMO

INTRODUCTION: A genome-wide association analysis revealed a rheumatoid arthritis (RA)-risk-associated genetic locus on chromosome 9, which contained the tumor necrosis factor receptor-associated factor 1 (TRAF1). However, the detail mechanism by TRAF1 signaled to fibroblast-like synoviocytes (FLSs) apoptosis remains to be fully understood. MATERIALS AND METHODS: Synovial tissue of 10 RA patients and osteoarthritis patients were obtained during joint replacement surgery. We investigated TRAF1 level and FLSs apoptosis percentage in vivo and elucidated the mechanism involved in the regulation of apoptotic process in vitro. RESULTS: We proved the significant increase of TRAF1 level in FLSs of RA patients and demonstrated that TRAF1 level correlated positively with DAS28 score and negatively with FLSs apoptosis. Treatment with siTRAF1 was able to decrease MMPs levels and the phosphorylated forms of JNK/NF-κB in vitro. Moreover, JNK inhibitor could attenuate expression of MMPs and increase percentage of apoptosis in RA-FLSs, while siTRAF1 could not promote apoptosis when RA-FLSs were pretreated with JNK activator. CONCLUSIONS: High levels of TRAF1 in RA synovium play an important role in the synovial hyperplasia of RA by suppressing apoptosis through activating JNK/NF-kB-dependent signaling pathways in response to the engagement of CD40.


Assuntos
Artrite Reumatoide , Antígenos CD40/metabolismo , Sinoviócitos , Apoptose , Artrite Reumatoide/metabolismo , Proliferação de Células , Células Cultivadas , Fibroblastos/metabolismo , Estudo de Associação Genômica Ampla , Humanos , MAP Quinase Quinase 4/metabolismo , NF-kappa B/metabolismo , Membrana Sinovial/patologia , Sinoviócitos/metabolismo , Fator 1 Associado a Receptor de TNF/genética , Fator 1 Associado a Receptor de TNF/metabolismo
13.
Biomolecules ; 12(6)2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35740911

RESUMO

Mitochondrial function is dependent on molecular chaperones, primarily due to their necessity in the formation of respiratory complexes and clearance of misfolded proteins. Heat shock proteins (Hsps) are a subset of molecular chaperones that function in all subcellular compartments, both constitutively and in response to stress. The Hsp90 chaperone TNF-receptor-associated protein-1 (TRAP1) is primarily localized to the mitochondria and controls both cellular metabolic reprogramming and mitochondrial apoptosis. TRAP1 upregulation facilitates the growth and progression of many cancers by promoting glycolytic metabolism and antagonizing the mitochondrial permeability transition that precedes multiple cell death pathways. TRAP1 attenuation induces apoptosis in cellular models of cancer, identifying TRAP1 as a potential therapeutic target in cancer. Similar to cytosolic Hsp90 proteins, TRAP1 is also subject to post-translational modifications (PTM) that regulate its function and mediate its impact on downstream effectors, or 'clients'. However, few effectors have been identified to date. Here, we will discuss the consequence of TRAP1 deregulation in cancer and the impact of post-translational modification on the known functions of TRAP1.


Assuntos
Proteínas de Choque Térmico HSP90 , Neoplasias , Fator 1 Associado a Receptor de TNF , Glicólise , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Neoplasias/metabolismo , Fator 1 Associado a Receptor de TNF/metabolismo
14.
Mol Cancer ; 21(1): 111, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538475

RESUMO

BACKGROUND: Sunitinib resistance can be classified into primary and secondary resistance. While accumulating research has indicated several underlying factors contributing to sunitinib resistance, the precise mechanisms in renal cell carcinoma are still unclear. METHODS: RNA sequencing and m6A sequencing were used to screen for functional genes involved in sunitinib resistance. In vitro and in vivo experiments were carried out and patient samples and clinical information were obtained for clinical analysis. RESULTS: We identified a tumor necrosis factor receptor-associated factor, TRAF1, that was significantly increased in sunitinib-resistant cells, resistant cell-derived xenograft (CDX-R) models and clinical patients with sunitinib resistance. Silencing TRAF1 increased sunitinib-induced apoptotic and antiangiogenic effects. Mechanistically, the upregulated level of TRAF1 in sunitinib-resistant cells was derived from increased TRAF1 RNA stability, which was caused by an increased level of N6-methyladenosine (m6A) in a METTL14-dependent manner. Moreover, in vivo adeno-associated virus 9 (AAV9) -mediated transduction of TRAF1 suppressed the sunitinib-induced apoptotic and antiangiogenic effects in the CDX models, whereas knockdown of TRAF1 effectively resensitized the sunitinib-resistant CDXs to sunitinib treatment. CONCLUSIONS: Overexpression of TRAF1 promotes sunitinib resistance by modulating apoptotic and angiogenic pathways in a METTL14-dependent manner. Targeting TRAF1 and its pathways may be a novel pharmaceutical intervention for sunitinib-treated patients.


Assuntos
Adenosina , Carcinoma de Células Renais , Neoplasias Renais , Metiltransferases , Sunitinibe , Fator 1 Associado a Receptor de TNF , Adenosina/análogos & derivados , Inibidores da Angiogênese/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Renais/irrigação sanguínea , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Neoplasias Renais/irrigação sanguínea , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/patologia , Masculino , Metiltransferases/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Sunitinibe/farmacologia , Fator 1 Associado a Receptor de TNF/genética , Fator 1 Associado a Receptor de TNF/metabolismo
15.
Int J Oncol ; 60(6)2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35543151

RESUMO

Metabolic rewiring fuels rapid cancer cell proliferation by promoting adjustments in energetic resources, and increasing glucose uptake and its conversion into lactate, even in the presence of oxygen. Furthermore, solid tumors often contain hypoxic areas and can rapidly adapt to low oxygen conditions by activating hypoxia inducible factor (HIF)­1α and several downstream pathways, thus sustaining cell survival and metabolic reprogramming. Since TNF receptor­associated protein 1 (TRAP1) is a HSP90 molecular chaperone upregulated in several human malignancies and is involved in cancer cell adaptation to unfavorable environments and metabolic reprogramming, in the present study, its role was investigated in the adaptive response to hypoxia in human colorectal cancer (CRC) cells and organoids. In the present study, glucose uptake, lactate production and the expression of key metabolic genes were evaluated in TRAP1­silenced CRC cell models under conditions of hypoxia/normoxia. Whole genome gene expression profiling was performed in TRAP1­silenced HCT116 cells exposed to hypoxia to establish the role of TRAP1 in adaptive responses to oxygen deprivation. The results revealed that TRAP1 was involved in regulating hypoxia­induced HIF­1α stabilization and glycolytic metabolism and that glucose transporter 1 expression, glucose uptake and lactate production were partially impaired in TRAP1­silenced CRC cells under hypoxic conditions. At the transcriptional level, the gene expression reprogramming of cancer cells driven by HIF­1α was partially inhibited in TRAP1­silenced CRC cells and organoids exposed to hypoxia. Moreover, Gene Set Enrichment Analysis of TRAP1­silenced HCT116 cells exposed to hypoxia demonstrated that TRAP1 was involved in the regulation of ribosome biogenesis and this occurred with the inhibition of the mTOR pathway. Therefore, as demonstrated herein, TRAP1 is a key factor in maintaining HIF­1α­induced genetic/metabolic program under hypoxic conditions and may represent a promising target for novel metabolic therapies.


Assuntos
Neoplasias Colorretais , Oxigênio , Hipóxia Celular , Neoplasias Colorretais/patologia , Glucose/metabolismo , Glicólise , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lactatos , Oxigênio/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Ribossomos/patologia , Fator 1 Associado a Receptor de TNF/metabolismo
16.
Cell Death Dis ; 13(2): 170, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35194031

RESUMO

RNA-binding proteins (RBPs) are key regulators of gene expression. RBP dysregulation is reported to play essential roles in tumorigenesis. However, the role of RBPs in urothelial carcinoma of the bladder (UCB) is only starting to be unveiled. Here, we comprehensively assessed the mRNA expression landscape of 104 RBPs from two independent UCB cohorts, Sun Yat-sen University Cancer Center (SYSUCC) and The Cancer Genome Atlas (TCGA). Fragile X-related gene 1 (FXR1) was identified as a novel cancer driver gene in UCB. FXR1 overexpression was found to be related to the poor survival rate in the SYSUCC and TCGA cohorts. Functionally, FXR1 promotes UCB proliferation and tumorigenesis. Mechanistically, FXR1 serves as a platform to recruit CFIm25 and CFIm68, forming a novel 3' processing machinery that functions in sequence-specific poly(A) site recognition. FXR1 affects the 3' processing of Tumor necrosis factor receptor-associated factor 1 (TRAF1) mRNA, which leads to nuclear stabilization. The novel regulatory relationship between FXR1 and TRAF1 can enhance cell proliferation and suppress apoptosis. Our data collectively highlight the novel regulatory role of FXR1 in TRAF1 3' processing as an important determinant of UCB oncogenesis. Our study provides new insight into RBP function and provides a potential therapeutic target for UCB.


Assuntos
Carcinoma de Células de Transição , Proteínas de Ligação a RNA , Fator 1 Associado a Receptor de TNF , Neoplasias da Bexiga Urinária , Carcinogênese/genética , Carcinoma de Células de Transição/genética , Linhagem Celular Tumoral , Fator de Especificidade de Clivagem e Poliadenilação , Regulação Neoplásica da Expressão Gênica , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fator 1 Associado a Receptor de TNF/genética , Fator 1 Associado a Receptor de TNF/metabolismo , Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Fatores de Poliadenilação e Clivagem de mRNA
17.
Oncogene ; 41(3): 400-413, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34759347

RESUMO

N6-methyladenosine (m6A), an internal modification in mRNA, plays a critical role in regulating gene expression. Dysregulation of m6A modifiers promotes oncogenesis through enzymatic functions that disrupt the balance between the deposition and removal of m6A modification on critical transcripts. However, the roles of mRNA m6A in multiple myeloma (MM) are poorly understood. The present study showed that RNA demethylase ALKBH5 was overexpressed in MM and associated with a poor prognosis in MM patients. Knocking down ALKBH5 induced apoptosis and inhibited the growth of MM cells in vitro. Xenograft models and gene set enrichment analysis with patient transcriptome datasets also supported the oncogenic role of ALKBH5 in MM. Mechanistic studies showed that ALKBH5 exerted tumorigenic effects in myeloma in an m6A-dependent manner, and TNF receptor-associated factor 1 (TRAF1) was a critical target of ALKBH5. Specifically, ALKBH5 regulated TRAF1 expression via decreasing m6A abundance in the 3'-untranslated region (3'-UTR) of TRAF1 transcripts and enhancing TRAF1 mRNA stability. As a result, ALKBH5 promoted MM cell growth and survival through TRAF1-mediated activation of NF-κB and MAPK signaling pathways. Collectively, our data demonstrated that ALKBH5 played a critical role in MM tumorigenesis and suggested that ALKBH5 could be a novel therapeutic target in MM.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Mieloma Múltiplo/genética , NF-kappa B/metabolismo , Fator 1 Associado a Receptor de TNF/metabolismo , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Mieloma Múltiplo/mortalidade , Mieloma Múltiplo/patologia , Prognóstico , Análise de Sobrevida
18.
Microb Pathog ; 159: 105117, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34363926

RESUMO

Host genetics are important to consider in the role of resistance or susceptibility for developing active pulmonary tuberculosis (TB). Several association studies have reported the role of variants in STAT4 and TRAF1/C5 as risk factors to autoimmune diseases. Nevertheless, more data is needed to elucidate the role of these gene variants in infectious disease. Our data reports for the first time, variant rs10818488 in the TRAF1/C5 gene (found 47% of the population worldwide), is associated with susceptibility (OR = 1.51) to development TB. Multivariate analysis evidenced association between rs10818488 TRAF1/C5 and risk to multibacillary TB (OR = 4.18), confers increased bacteria load in the lung, indicates a decreased ability to control pathogen levels in the lung, and spread of the pathogen to new hosts. We showed that the "loss-of-function" variant in TRAF1/C5 led to susceptibility for TB by decreased production of TNF-α. Our results suggest the role of variant TRAF1/C5 in susceptibility to TB as well as in clinical presentation of multibacillary TB.


Assuntos
Fator 1 Associado a Receptor de TNF , Tuberculose Pulmonar , Complemento C5 , Predisposição Genética para Doença , Humanos , Pulmão/metabolismo , Polimorfismo de Nucleotídeo Único , Fator 1 Associado a Receptor de TNF/genética , Fator 1 Associado a Receptor de TNF/metabolismo , Tuberculose Pulmonar/genética , Fator de Necrose Tumoral alfa/genética
19.
Front Immunol ; 11: 1892, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973783

RESUMO

Compared to adults, neonates are at increased risk of infection. There is a growing recognition that dynamic qualitative and quantitative differences in immunity over development contribute to these observations. The liver plays a key role as an immunologic organ, but whether its contribution to the acute innate immune response changes over lifetime is unknown. We hypothesized that the liver would activate a developmentally-regulated acute innate immune response to intraperitoneal lipopolysaccharide (LPS). We first assessed the hepatic expression and activity of the NF-κB, a key regulator of the innate immune response, at different developmental ages (p0, p3, p7, p35, and adult). Ontogeny of the NF-κB subunits (p65/p50) revealed a reduction in Rela (p65) and Nfkb1 (p105, precursor to p50) gene expression (p0) and p65 subunit protein levels (p0 and p3) vs. older ages. The acute hepatic innate immune response to LPS was associated by the degradation of the NF-κB inhibitory proteins (IκBα and IκBß), and nuclear translocation of the NF-κB subunit p50 in all ages, whereas nuclear translocation of the NF-κB subunit p65 was only observed in the p35 and adult mouse. Consistent with these findings, we detected NF-κB subunit p65 nuclear staining exclusively in the LPS-exposed adult liver compared with p7 mouse. We next interrogated the LPS-induced hepatic expression of pro-inflammatory genes (Tnf, Icam1, Ccl3, and Traf1), and observed a gradually increase in gene expression starting from p0. Confirming our results, hepatic NF-κB subunit p65 nuclear translocation was associated with up-regulation of the Icam1 gene in the adult, and was not detected in the p7 mouse. Thus, an inflammatory challenge induces an NF-κB-mediated hepatic innate immune response activation across all developmental ages, but nuclear translocation of the NF-κB subunit p65 and associated induction of pro-inflammatory genes occurred only after the first month of life. Our results demonstrate that the LPS-induced hepatic innate immune response is developmentally regulated by the NF-κB subunit p65 in the mouse.


Assuntos
Endotoxemia/metabolismo , Imunidade Inata , Fígado/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição RelA/metabolismo , Fatores Etários , Animais , Quimiocina CCL3/genética , Quimiocina CCL3/metabolismo , Modelos Animais de Doenças , Endotoxemia/induzido quimicamente , Endotoxemia/genética , Endotoxemia/imunologia , Regulação da Expressão Gênica no Desenvolvimento , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Lipopolissacarídeos , Fígado/imunologia , Masculino , Camundongos Endogâmicos ICR , Subunidade p50 de NF-kappa B/genética , Subunidade p50 de NF-kappa B/metabolismo , Transdução de Sinais , Fator 1 Associado a Receptor de TNF/genética , Fator 1 Associado a Receptor de TNF/metabolismo , Fator de Transcrição RelA/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
20.
Biomed Res Int ; 2020: 1481572, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32908868

RESUMO

OBJECTIVE: To investigate the effects of HuR protein on the treatment of chronic lymphocytic leukemia (CLL). METHODS: LCL lymphoblast cells and B lymphocytes were subjected to HuR overexpression (OV) or interference (IV). Western blot was used to observe the protein expression of human tumor necrosis factor-associated factor 1 (TRAF1), human inhibitor of nuclear factor kappa-B kinase α (IKK-α), NF-κB-inducing kinase (NIK), and p52. Flow cytometry was performed to evaluate apoptosis, and the mRNA expression of TRAF1 was examined by quantitative reverse transcription polymerase chain reaction. Immunofluorescence was carried out to visualize the expression of HuR, and the relationship between HuR and TRAF1 was observed by pull-down test. Cell sensitivity to chlorambucil (CLB) and fludarabine (Flu) was assessed by Cell Counting Kit-8. RESULTS: The expression of HuR and TRAF1 in LCLs was significantly increased compared to that in B lymphocytes. Compared with the control, HuR OV significantly increased the expression of TRAF1 (P < 0.05), whereas it was significantly decreased in the IV group (P < 0.05). HuR can bind to TRAF1 directly, and the binding rate is positively correlated with HuR expression. After inhibiting HuR, the expression of TRAF1, IKK-α, NIK, p52, pro-Caspase 3, and PARP was significantly upregulated in LCLs and B lymphocytes (P < 0.05), while Caspase 3 was downregulated (P < 0.05). Compared with the control, the proliferation of LCLs and B lymphocytes treated by CLB and Flu decreased significantly after HuR blockade (P < 0.05). CONCLUSION: HuR may be a key protein regulating CLL resistance. After inhibiting HuR, inflammatory response and apoptosis were significantly increased, and the cell sensitivity to CLB and Flu increased, suggesting that inhibiting HuR activity may be a potential strategy to solve the problem of drug resistance in CLL cells.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , NF-kappa B/metabolismo , Antineoplásicos/farmacologia , Apoptose , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Linfócitos B/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Clorambucila/farmacologia , Resistencia a Medicamentos Antineoplásicos , Proteína Semelhante a ELAV 1/antagonistas & inibidores , Proteína Semelhante a ELAV 1/genética , Humanos , Quinase I-kappa B/metabolismo , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais , Fator 1 Associado a Receptor de TNF/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima , Vidarabina/análogos & derivados , Vidarabina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...